Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 176

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Potential bacterial alteration of nuclear fuel debris; A Preliminary study using simulants in powder and pellet forms

Liu, J.; Dotsuta, Yuma; Sumita, Takehiro; Kitagaki, Toru; Onuki, Toshihiko; Kozai, Naofumi

Journal of Radioanalytical and Nuclear Chemistry, 331(6), p.2785 - 2794, 2022/06

 Times Cited Count:3 Percentile:66.21(Chemistry, Analytical)

Remnant nuclear fuel debris in the damaged nuclear reactors at the Fukushima Daiichi Nuclear Power Plant (FDNPP) has contacted the groundwater containing microorganisms for over ten years. Herein, we report the possibility of bacterial alteration of fuel debris. We investigated the physical and chemical changes of fuel debris simulants (FDS) in the powder and pellet forms via exposure to two ubiquitous bacteria, Pseudomonas fluorescens and Bacillus subtilis. In the experiments using FDS composed of the powders of Fe(0), solid solution of CeO$$_{2}$$ and ZrO$$_{2}$$, and SiO$$_{2}$$, Ce, Zr, and Si were hardly dissolved, while Fe was dissolved, a fraction of the dissolved Fe was present in the liquid phase as Fe(II) and Fe(III), and the rest was precipitated as the nano-sized particles of iron (hydr)oxides. In the experiment using P. fluorescens and FDS pellet pieces prepared by melting the Fe(0) particles and solid solution of CeO$$_{2}$$ and ZrO$$_{2}$$, the bacteria selectively gathered on the Fe(0) particle surface and made corrosion pits. These results suggest that bacteria in groundwater corrode the iron in fuel debris at FDNPP, change fuel debris into porous one, releasing the nano-sized iron (hydr)oxide particles into the water.

Journal Articles

Decrease of radionuclide sorption in hydrated cement systems by organic ligands; Comparative evaluation using experimental data and thermodynamic calculations for ISA/EDTA-actinide-cement systems

Ochs, M.*; Dolder, F.*; Tachi, Yukio

Applied Geochemistry, 136, p.105161_1 - 105161_11, 2022/01

 Times Cited Count:4 Percentile:63.38(Geochemistry & Geophysics)

Various types of radioactive wastes and environments contain organic substances that can stabilize the aqueous complexes with radionuclides and therefore lead to a decrease of sorption. The present study focuses on testing a methodology to quantify sorption reduction factors (SRFs) in the presence of organic ligands for cement systems. Three approaches for the estimation of SRFs; (1) analogy with solubility enhancement factors, (2) radionuclide speciation based on the thermodynamic calculations, and (3) experimental sorption data in ternary systems, were coupled and tested for the representative organic ligands (ISA and EDTA) and selected key radionuclides (actinides). Our approach allows to critically evaluate the dependence of SRFs for various systems on the chosen method of quantification, in accordance with the data availability for a given systems. The reliable SRFs can only be derived from the sorption measurements in ternary systems. SRF often need to be derived in the absence of such direct evidence, and estimations need to be made based on analogies and speciation information. However, such estimates may be subject to substantial uncertainties.

JAEA Reports

Establishment of the measurement system of radiation dependent mutation in organ cells derived from human induced pluripotent stem cells (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2021-029, 64 Pages, 2021/12

JAEA-Review-2021-029.pdf:2.74MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Establishment of the measurement system of radiation dependent mutation in organ cells derived from human induced pluripotent stem cells" conducted from FY2018 to 2020. Since the final year of this proposal was FY2020, the results for three fiscal years were summarized. The present study aimed to establish measurement system of radiation dependent mutation for analyze radiation effect to the human body. A distinctive feature of this study is to compare several organ cells which possess same genome DNA using human induced pluripotent stem cell. Further, using artificial intelligence technology and machine leaning method, we analyzed differences of mutation frequency during samples.

Journal Articles

Additive-free hydrothermal leaching method with low environmental burden for screening of strontium in soil

Kato, Takuma*; Nagaoka, Mika; Guo, H.*; Fujita, Hiroki; Aida, Taku*; Smith, R. L. Jr.*

Environmental Science and Pollution Research, 28(39), p.55725 - 55735, 2021/10

 Times Cited Count:0 Percentile:0(Environmental Sciences)

In this work, hydrothermal leaching was applied to simulated soils (clay minerals vermiculite, montmorillonite, kaolinite) and actual soils (Terunuma, Japan) to generate organic acids with the objective to develop an additive-free screening method for determination of Sr in soil. Stable strontium (SrCl$$_{2}$$) was adsorbed onto soils for study and ten organic acids were evaluated for leaching Sr from simulated soils under hydrothermal conditions (120 to 200$$^{circ}$$C) at concentrations up to 0.3 M. For strontium-adsorbed vermiculite (Sr-V), 0.1 M citric acid was found to be effective for leaching Sr at 150$$^{circ}$$C and 1 h treatment time. Based on these results, the formation of organic acids from organic matter in Terunuma soil was studied. Hydrothermal treatment of Terunuma soil produced a maximum amount of organic acids at 200$$^{circ}$$C and 0.5 h reaction time. To confirm the possibility for leaching of Sr from Terunuma soil, strontium-adsorbed Terunuma soil (Sr-S) was studied. For Sr-S, hydrothermal treatment at 200$$^{circ}$$C for 0.5 h reaction time allowed 40% of the Sr to be leached at room temperature, thus demonstrating an additive-free method for screening of Sr in soil. The additive-free hydrothermal leaching method avoids calcination of solids in the first step of chemical analysis and has application to both routine monitoring of metals in soils and to emergency situations.

Journal Articles

Effect of B$$_{4}$$C absorber material on melt progression and chemical forms of iodine or cesium under severe accident conditions

Hidaka, Akihide

Insights Concerning the Fukushima Daiichi Nuclear Accident, Vol.4; Endeavors by Scientists, p.341 - 356, 2021/10

JAEA Reports

Establishment of the measurement system of radiation dependent mutation in organ cells derived from human induced pluripotent cells (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2020-061, 56 Pages, 2021/01

JAEA-Review-2020-061.pdf:2.93MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Establishment of the measurement system of radiation dependent mutation in organ cells derived from human induced pluripotent cells" conducted in FY2019. In this study, we aimed to establish measurement system of radiation dependent mutation for analyze radiation effect to the human body. A distinctive feature of this study is to compare several organ cells which possess same genome DNA using human induced pluripotent stem cell. Further, using artificial intelligence technology and machine leaning method, we will analyze differences of mutation frequency during samples.

Journal Articles

Self-organization of zonal flows and isotropic eddies in toroidal electron temperature gradient driven turbulence

Kawai, Chika*; Idomura, Yasuhiro; Ogawa, Yuichi*; Yamada, Hiroshi*

Physics of Plasmas, 27(8), p.082302_1 - 082302_11, 2020/08

 Times Cited Count:2 Percentile:6.24(Physics, Fluids & Plasmas)

Self-organization in the toroidal electron temperature gradient driven (ETG) turbulence is investigated based on a global gyrokinetic model in a weak magnetic shear configuration. Because of global profile effects, toroidal ETG modes with higher toroidal mode number n are excited at the outer magnetic surfaces, leading to strong linear wave dispersion. The resulting anisotropic wave turbulence boundary and the inverse energy cascade generate the self-organization of zonal flows, which is the unique mechanism in the global gyrokinetic model. The self-organization is confirmed both in the decaying turbulence initialized by random noises and in the toroidal ETG turbulence. It is also shown that the self-organization process generates zonal flows and isotropic eddies depending on a criterion parameter, which is determined by the ion to electron temperature ratio and the turbulence intensity.

Journal Articles

Key factors controlling radiocesium sorption and fixation in river sediments around the Fukushima Daiichi Nuclear Power Plant, 1; Insights from sediment properties and radiocesium distributions

Tachi, Yukio; Sato, Tomofumi*; Akagi, Yosuke*; Kawamura, Makoto*; Nakane, Hideji*; Terashima, Motoki; Fujiwara, Kenso; Iijima, Kazuki

Science of the Total Environment, 724, p.138098_1 - 138098_11, 2020/07

 Times Cited Count:14 Percentile:56.04(Environmental Sciences)

To understand and predict radiocesium transport behaviors in the environment, highly contaminated sediments from Ukedo and Odaka rivers around the Fukushima Daiichi Nuclear Power Plant were investigated systematically focusing on key factors controlling radiocesium sorption and fixation, including particle size, clay mineralogy and organic matter.

Journal Articles

Key factors controlling radiocesium sorption and fixation in river sediments around the Fukushima Daiichi Nuclear Power Plant, 2; Sorption and fixation behaviors and their relationship to sediment properties

Tachi, Yukio; Sato, Tomofumi*; Takeda, Chizuko*; Ishidera, Takamitsu; Fujiwara, Kenso; Iijima, Kazuki

Science of the Total Environment, 724, p.138097_1 - 138097_10, 2020/07

 Times Cited Count:9 Percentile:42.38(Environmental Sciences)

To understand and predict radiocesium transport behaviors in the environment, sorption and fixation behaviors of radiocesium on river sediments from Ukedo and Odaka rivers around the Fukushima Daiichi Nuclear Power Plant were investigated systematically focusing on Cs sorption and fixation mechanisms and their relationship with Cs concentrations and sediment properties including clay mineralogy and organic matter.

JAEA Reports

Establishment of measurement system for radiation-dependent mutation in organ tissue cells derived from human iPS cells (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2019-026, 51 Pages, 2020/01

JAEA-Review-2019-026.pdf:2.8MB

JAEA/CLADS had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Establishment of Measurement System for Radiation-dependent Mutation in Organ Tissue Cells Derived from Human iPS Cells". The purpose of the present study is to establish an experimental system to evaluate the difference in radiation-dependent mutation among tissues. In previous studies, unified evaluation of the difference in radiation-dependent mutation among tissues has been difficult because the mutation rate among tissues had been evaluated using cell lines taken from different individuals. Recent biotechnological innovation in stem cell field represented by iPS cells has become enable to induce differentiation of tissue cells from a single cell. In the present study, Tokyo Institute of Technology produce tissue cells in nervous, dermal, blood and circulatory systems by unifying these new technologies. Using these tissue cells, we measure the mutation rate for each tissue after the radiation exposure, and aim to establish an experimental system to evaluate the difference in mutation depending on tissues by constructing a mathematical model.

Journal Articles

Characterizing vertical migration of $$^{137}$$Cs in organic layer and mineral soil in Japanese forests; Four-year observation and model analysis

Muto, Kotomi; Atarashi-Andoh, Mariko; Matsunaga, Takeshi*; Koarashi, Jun

Journal of Environmental Radioactivity, 208-209, p.106040_1 - 106040_10, 2019/11

 Times Cited Count:13 Percentile:48.62(Environmental Sciences)

Vertical distributions of $$^{137}$$Cs in the soil profile were observed at five forest sites with different vegetation types for 4.4 years after the Fukushima Dai-ichi Nuclear Power Plant accident, and $$^{137}$$Cs migration in the organic layer and mineral soil was analyzed based on a comparison of models and observations. Cesium-137 migration from the organic layer was faster than that observed in European forests, suggesting that the mobility and bioavailability of $$^{137}$$Cs could be suppressed rapidly in Japanese forests. The diffusion coefficients of $$^{137}$$Cs in the mineral soil were estimated to be 0.042-0.55 cm$$^2$$y$$^{-1}$$, which were roughly comparable with those of European forest soils affected by the Chernobyl Nuclear Power Plant accident. Model predictions indicated $$^{137}$$Cs mainly distributed in the surface mineral soil at 10 years after the accident. It suggest that the $$^{137}$$Cs deposited onto Japanese forest ecosystems will be retained in the surface layers of mineral soil for a long time.

Journal Articles

A Laboratory investigation of microbial degradation of simulant fuel debris by oxidizing microorganisms

Liu, J.; Dotsuta, Yuma; Kitagaki, Toru; Kozai, Naofumi; Yamaji, Keiko*; Onuki, Toshihiko

Proceedings of International Topical Workshop on Fukushima Decommissioning Research (FDR 2019) (Internet), 2 Pages, 2019/05

To decommission the Fukushima Daiichi Nuclear Power Plant (FDNPP), it is necessary to estimate the current status of fuel debris and predicate the possible change under various condition. Some microorganisms may enter the plant due to the seawater injection after accident and future defueling activity. In this study, microbial influence on fuel debris under aerobic condition was experimentally investigated. By culturing some bacteria in the presence of simulant fuel debris in liquid medium, the microbial degradation of fuel debris was observed.

Journal Articles

Sorption parameter setting approaches for radioactive waste disposal considering perturbation effects; Sorption reduction factors for organics

Tachi, Yukio; Ochs, M.*

Progress in Nuclear Science and Technology (Internet), 5, p.229 - 232, 2018/11

Various types of post-accident radioactive waste have been generated from cleanup and decommissioning activities at the Fukushima Daiichi Nuclear Power Plant. For the disposal of these wastes, perturbation effects resulting from co-existing substances (e.g., organic substances, boron, and salts) are needed to be considered. Such co-existing substances may influence on the radionuclide sorption parameters for the safety assessment of the disposal systems. The present study focuses on developing the methodology to quantify sorption parameters by considering such perturbation effects and illustrating example calculations regarding the sorption reduction factors (SRFs) due to the presence of organic ligands (ISA) for cement systems. Three approaches for the derivations of SRFs for cement-Am-ISA case were compared. These options should be applied as a stepwise manner according to the data availability for the perturbation effects resulting from the co-existing substances.

Journal Articles

Retention of uranium in cement systems; Effects of cement degradation and complexing ligands

Ochs, M.*; Vriens, B.*; Tachi, Yukio

Progress in Nuclear Science and Technology (Internet), 5, p.208 - 212, 2018/11

The clean-up activities related to the accident at the Fukushima Nuclear Power Plant give rise to several types of wastes containing cementitious materials, such as concrete. Further, the use of cement-based barriers may be considered, due to their favorable and stable chemical properties, including their ability to sorb or incorporate radionuclides. Wastes from Fukushima are expected to contain substances that can have perturbing effects on retention, especially organic complexing substances, boron, and chloride salts. The present study focuses on a methodology for quantifying the retention behaviour of UVI) and U(IV) in cement materials of different degradation and in the presence of organics, boron, and salts on the basis of available literature information. A stepwise approach is proposed and illustrated for Kd setting for U(VI) and U(IV).

Journal Articles

Radiation-induced degradation of aqueous 2-chlorophenol assisted by zeolites

Kumagai, Yuta; Kimura, Atsushi*; Taguchi, Mitsumasa*; Watanabe, Masayuki

Journal of Radioanalytical and Nuclear Chemistry, 316(1), p.341 - 348, 2018/04

 Times Cited Count:2 Percentile:20.74(Chemistry, Analytical)

We studied effect of adsorption and condensation by zeolites on radiation-induced degradation of aqueous 2-chlorophenol (2-ClPh). This study aims to demonstrate that the solid-phase extraction using zeolites has potential advantage in treatments of aqueous organic pollutants. Among three zeolites examined in this study, a mordenite type zeolite (HMOR) that has a high Si to Al ratio (127 $$pm$$ 3) exhibited preferable performance as the matrix for the 2-ClPh degradation. HMOR adsorbed far more 2-ClPh than the other zeolites, which have lower Si/Al ratios. The irradiation of HMOR induced degradation of adsorbed 2-ClPh into Cl$$^{-}$$ and organic by-products. We found a significant increase in Cl$$^{-}$$ production by HMOR. The yield of Cl$$^{-}$$ production in the presence of HMOR was as high as the yield in aqueous solution of 2-ClPh at a concentration 10 times higher. The increased Cl$$^{-}$$ production indicates that the high concentration of adsorbed 2-ClPh led to effective use of the adsorbed energy of HMOR.

Journal Articles

Role of soil-to-leaf tritium transfer in controlling leaf tritium dynamics; Comparison of experimental garden and tritium-transfer model results

Ota, Masakazu; Kwamena, N.-O. A.*; Mihok, S.*; Korolevych, V.*

Journal of Environmental Radioactivity, 178-179, p.212 - 231, 2017/11

 Times Cited Count:14 Percentile:43.09(Environmental Sciences)

Environmental transfer models assume that organically-bound tritium (OBT) is formed directly from tissue-free water tritium (TFWT) in environmental compartments. Nevertheless, studies in the literature have shown that measured OBT/TFWT ratios are variable. The importance of soil-to-leaf HTO transfer pathway in controlling the leaf tritium dynamics is not well understood. A model inter-comparison of two tritium transfer models (CTEM-CLASS-TT and SOLVEG-II) was carried out with measured environmental samples from an experimental garden plot set up next to a tritium-processing facility. The garden plot received one of three different irrigation treatments - no external irrigation, irrigation with low tritium water and irrigation with high tritium water. The contrast between the results obtained with the different irrigation treatments provided insights into the impact of soil-to-leaf HTO transfer on the leaf tritium dynamics. Concentrations of TFWT and OBT in the garden plots that were not irrigated or irrigated with low tritium water were variable, responding to the arrival of the HTO-plume from the tritium-processing facility. In contrast, for the plants irrigated with high tritium water, the TFWT concentration remained elevated due to a continuous source of high HTO in the soil. Calculated concentrations of OBT in the leaves showed an initial increase followed by quasi-equilibration with the TFWT concentration. In this quasi-equilibrium state, concentrations of OBT remained elevated and unchanged despite the arrivals of the plume. These results from the model inter-comparison demonstrate that soil-to-leaf HTO transfer significantly affects OBT/TFWT ratio in the leaf regardless of the atmospheric HTO concentration, only if there is elevated HTO concentrations in the soil. The results of this work indicate that assessment models should be refined to consider the importance of soil-to-leaf HTO transfer to ensure that dose estimates are accurate and conservative.

Journal Articles

Sources of $$^{137}$$Cs fluvial export from a forest catchment evaluated by stable carbon and nitrogen isotopic characterization of organic matter

Muto, Kotomi; Atarashi-Andoh, Mariko; Koarashi, Jun; Takeuchi, Erina; Nishimura, Shusaku; Tsuzuki, Katsunori; Matsunaga, Takeshi*

Journal of Radioanalytical and Nuclear Chemistry, 314(1), p.403 - 411, 2017/10

 Times Cited Count:16 Percentile:83.58(Chemistry, Analytical)

Fluvial export of particulate and dissolved $$^{137}$$Cs was investigated to reveal its sources and transfer mechanisms in a broadleaved forest catchment using a continuous collection system. The finest size fraction ($$<$$ 75$$mu$$m), consisting of decomposed litter and surface mineral soil, was the dominant fraction in the particulate $$^{137}$$Cs load, although the contribution of coarser size fractions increased during high water discharge in 2014. The dissolved $$^{137}$$Cs originated from the decomposition of $$^{137}$$Cs-contaminated litter. Temporal changes in $$^{137}$$Cs distribution in the litter-mineral soil system indicated that the dissolved $$^{137}$$Cs load will be moderated in several years, while particulate $$^{137}$$Cs load has the potential to continue for a long time.

Journal Articles

Impact of plasma parameter on self-organization of electron temperature gradient driven turbulence

Kawai, Chika*; Idomura, Yasuhiro; Maeyama, Shinya*; Ogawa, Yuichi*

Physics of Plasmas, 24(4), p.042303_1 - 042303_13, 2017/04

AA2017-0111.pdf:7.14MB

 Times Cited Count:2 Percentile:10.49(Physics, Fluids & Plasmas)

Self-organization in the slab electron temperature gradient driven (ETG) turbulence is investigated based on gyrokinetic simulations and the Hasegawa-Mima (HM) equation. The scale and the anisotropy of self-organized turbulent structures vary depending on the Rhines scale and the characteristic scale given by the adiabatic response term in the HM equation. The former is determined by competition between the linear wave dispersion and the nonlinear turbulent cascade, while the latter is given as the scale, at which the turbulent cascade is impeded. These scales are controlled by plasma parameters such as the density and temperature gradient, and the temperature ratio of ion to electron. It is found that depending on the plasma parameters, the ETG turbulence shows either isotropic turbulence or zonal flows, which give significantly different transport levels. Although the modulational instability excites zonal modes regardless of the plasma parameters, the final turbulent structure is determined by the self-organization process.

Journal Articles

Complex chemistry with complex compounds

Eichler, R.*; Asai, Masato; Brand, H.*; Chiera, N. M.*; Di Nitto, A.*; Dressler, R.*; D$"u$llmann, Ch. E.*; Even, J.*; Fangli, F.*; Goetz, M.*; et al.

EPJ Web of Conferences, 131, p.07005_1 - 07005_7, 2016/12

 Times Cited Count:3 Percentile:72.98(Chemistry, Inorganic & Nuclear)

In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the productions and investigations of fragile single molecular species of superheavy elements. The latest highlight is the formation of very volatile hexacarbonyl compound of element 106, Sg(CO)$$_{6}$$. Following this success, second-generation experiments were performed to measure the first bond dissociation energy between the central metal atom and the surrounding ligand. The method using a tubular decomposition reactor was developed and successfully applied to short-lived Mo(CO)$$_{6}$$, W(CO)$$_{6}$$, and Sg(CO)$$_{6}$$.

Journal Articles

Decomposition studies of group 6 hexacarbonyl complexes, 1; Production and decomposition of Mo(CO)$$_6$$ and W(CO)$$_6$$

Usoltsev, I.*; Eichler, R.*; Wang, Y.*; Even, J.*; Yakushev, A.*; Haba, Hiromitsu*; Asai, Masato; Brand, H.*; Di Nitto, A.*; D$"u$llmann, Ch. E.*; et al.

Radiochimica Acta, 104(3), p.141 - 151, 2016/03

 Times Cited Count:31 Percentile:94.91(Chemistry, Inorganic & Nuclear)

Conditions of the production and decomposition of hexacarbonyl complexes of short-lived Mo and W isotopes were investigated to study thermal stability of the heaviest group 6 hexacarbonyl complex Sg(CO)$$_6$$. A tubular flow reactor was tested to decompose the hexacarbonyl complexes and to extract the first bond dissociation energies. A silver was found to be the most appropriate reaction surface to study the decomposition of the group 6 hexacarbonyl. It was found that the surface temperature at which the decomposition occurred was correlated to the first bond dissociation energy of Mo(CO)$$_6$$ and W(CO)$$_6$$, indicating that the first bond dissociation energy of Sg(CO)$$_6$$ could be determined with this technique.

176 (Records 1-20 displayed on this page)